Using Computational Neuroscience to Define Common Input to Spinal Motor Neurons
نویسندگان
چکیده
Common input is a widely used concept in motor neurophysiology. It embodies the notion that inputs to individual spinal motor neurons (MNs) are not unique, but partly shared across MNs, and is considered the main explanation for synchronized activity of MNs (Bremner et al. Motor-unit synchronization was first observed in the time domain using cross-correlation histograms from pairs of MNs (Sears and Stagg, 1976). This was later extended to the frequency domain by estimating coherence between spike trains to reveal the frequency content of common input (Farmer et al., 1993). In addition to measurements of individual MNs, coherence can also be estimated between the surface EMG of different muscles—referred to as intermuscular coherence—to assess common input shared across motor-unit pools (Boonstra and Breakspear, 2012). Common input is considered relevant for motor control as it may provide a mechanism to reduce the dimensionality of the control signal, thereby simplifying motor control (Farmer, 1998). Recently the existence of common input has been debated: while some argue that synergistic muscles share most of their synaptic input (Laine et al., 2015), others have argued that common input provides no explanation for MN synchronization (Kline and De Luca, 2016). Apart from common input being used to explain different types of MN synchronization, this dispute mainly arises from the absence of a clear definition of common input (cf. Kirkwood, 2016). Initially, Sears and colleagues defined common input structurally, that is, as resulting from branched presynaptic axons (Sears and Stagg, 1976; Kirkwood and Sears, 1978). Later, presynaptic synchronization—synchronization of neurons that project to the MNs—was proposed as an explanation for broad-peak MN synchronization (central peak in cross-correlogram with a duration of 40–60 ms), which is observed following a lesion of the direct mono-synaptic inputs to MNs and cannot be explained by branched presynaptic axons (Kirkwood et al., 1982). This is a functional definition as it involves correlations between input activities, rather than shared anatomical connections. Although the authors themselves did not refer to this mechanism as common input, the term common input has been invoked quite loosely in recent years, reflecting either shared structural or functional inputs. To resolve this dispute and determine whether MN synchronization is caused by common input, we first need to agree on the definitions of common input and MN synchronization. Computational models are particularly useful as they provide a quantitative and unambiguous description of variables. Computational neuroscience can be used to define …
منابع مشابه
Protective effect of curcumin and Curcuma longa extract on apoptosis of motor neurons in cultured spinal cord slices of adult mouse
Introduction: Since Curcuma longa extract and curcumin have been shown to be potent antioxidant agents, they were used in cultured adult mouse spinal cord slices to investigate whether they can inhibit apoptosis in motor neurons. Methods: Slices from the thoracic region of adult mice spinal cord were divided into four groups: 1. Freshlyprepared slices (time 0) 2. Control 3. Slices treated by cu...
متن کاملAllopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats
Objective(s):Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have b...
متن کاملOlig2+ precursors produce abducens motor neurons and oligodendrocytes in the zebrafish hindbrain.
During development, a specific subset of ventral spinal cord precursors called pMN cells produces first motor neurons and then oligodendrocyte progenitor cells (OPCs), which migrate, divide and differentiate as myelinating oligodendrocytes. pMN cells express the Olig2 transcription factor and Olig2 function is necessary for formation of spinal motor neurons and OPCs. In the hindbrain and midbra...
متن کاملLong and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control.
Afferent input from load and joint receptors has been shown to reactivate the central pattern generators for locomotion (CPGs) in spinal cord injury patients and thereby improve their motor function and mobility. Elucidation of the pathways interposed between the afferents and CPGs is critical for the determination of the capacity of sensory input to activate the CPGs when the continuity of the...
متن کاملSegmental, synaptic actions of commissural interneurons in the mouse spinal cord.
Left-right alternation depends on activity in commissural interneurons (CINs) that have axons crossing in the midline. In this study, we investigate the CIN connectivity to local motor neurons using a newly developed preparation of the in vitro neonatal mouse spinal cord that allows us to identify all classes of CINs. Nineteen of 29 short-range CINs with axonal projections <1.5 segments (sCINs)...
متن کامل